U.S. GEOLOGICAL SURVEY-BRANCH OF ATLANTIC MARINE GEOLOGY

ELECTRONIC CRUISE REPORT

- 1. SHIP NAME (Parent vessel)/SUBMERSIBLE/OWNER-OPERATOR: JOIDES Resolution (SEDCO/BP 471) JDRS 95040
- 2. PRE-CRUISE SERIAL # AND/OR CRUISE-LEG: 95040
- 3. PROJECT # AND NAME: 34120 & 34121 Gas Hydrates
- 4. FUNDING AGENCY: Joint Oceanographic Institutions, Inc. (JOI)
- 5. CONTRACT (If applicable):
- 6. AREA OF OPERATIONS: Cape Fear Slide and Blake Ridge, off coast of N. Carolina
- 7. START DATE: 31 Oct 95
- 8. START PORT: Halifax, Nova Scotia
- 9. END DATE: 19 Dec 95
- 10. END PORT: Miami, FL
- 11. CHIEF SCIENTIST(S): Ryo Matsumoto, University of Tokyo
 Charles Paull, University of North Carolina
- 12. SCIENTIFIC PARTY (Names, affiliations, cruise duties):
 28 scientific participants from 9 countries
 Available from leg 164 preliminary results volume (Crawford Reading Room)
- 13. SHIP'S CAPTAIN (and affiliation): Tom Ribbens
- 14. PURPOSE OF CRUISE (brief statement)

 Learn as much as possible about occurrance and properties of in situ gas hydrates:
 - 1. quantify the amount of in situ gas hydrates (GH)
 - 2. learn about lateral extent of GH
 - 3. assess interaction between bottom simulating reflector

(BSR) and amount and location of GH

- 4. investigate in situ sediment fabric near GH
- 5. assess changes in physical properties of sediment

associated with the formation and decomposition of GH

6. determine origin of gas trapped in GH

- 7. GH influence on authigenic carbonates
- 8. measure chemical and isotopic composition of gas from GH
- 9. determine gas composition, hydration number and crystal

structure of GH

- 10. influence of GH and fluid migration
- 11. assess GH dissociation on slope instability
- 12. relationship between Carolina Rise diapirs and GH and

origin of diapirs

15. NAVIGATION TECHNIQUES:

Satellite (GPS)

Ocean bottom transponder

16. SCIENTIFIC EQUIPMENT:

r

Drilling-related and down-hole:

Advanced Piston Corer (APC)

Extended Core Barrel (XCB)

Rotary Core Barrel (RCB)

Pressure Core Sampler (PCS)

Water-sampling Temperature Probe (WSTP)

Fisseler water sampler

Fully equipped labs:

Geotechnical Laboratory

Balance

Gas comparison pycnometer Vane shear strength machine

P-wave velocity (3 axis)

Multisensor track

Gamma Ray Attenuation Porosity Evaluato

(GRAPE)

P-wave velocity logger Magnetic susceptibility meter

Natural gamma radiation detector

Thermal conductivity

Lithostratigraphy

Smear slides

Thin sections

X-ray diffraction

Spectrophotometer

X-raydiography

Gas hydrate sampling

Core temperature measurement

Gas hydrate dissociation chamber

Isothermal decompression analysis system

Gas collection chambers

Paleomagnetic detector

Organic Geochemistry

Natural gas analyzer

Gas chromatograph Carbon dioxide coulometer

NCS analyzer

Inorganic geochemistry

Ion chromatograph

Atomic absorption spectrometer

Geophysics

Three-component borehole seismometer

Airgun

Water gun

Downhole logging

Natural gamma-ray spectrometry tool

Phasor dual induction-spherically focused

resistivity tool

Long spaced sonic tool

High temperature lithodensity tool Compensated neutron porosity tool

Geochemical logging tool

Formation microscanner tool

In situ temperature

ADARA APC tool

Water sampling - temperature probe (WSTP)

Davis-Villinger temperature probe

17. TABULATED INFORMATION:

DAYS AT SEA: 50

CONTINUOUS DATA (in km):

STATIONS OCCUPIED (stationary and underway): 7 sites; 17

holes

SUBMERSIBLE DIVES (BY #): 0

STATION INFORMATION:

Available from leg 164 preliminary results volume

Station number:

Date of occupation:

Latitude/Longitude:

Water depth:

Sampling device (dive #):

Number and type of samples:

18. SUBMITTED BY AND DATE:

Bill Winters 16 Oct96

- 19. SEISMIC LINE LIST IN CHRONOLOGICAL ORDER: (#, date, Julien day, start/end time in UTC, where data reside if not in Woods Hole)
- 20. SAMPLE/CORE LIST: (#, lat/long, type, where data reside)
 Available from leg 164 preliminary results volume